Tag Archives: NASA

Apollo 17 at Shorty Crater

In December of 1972, Apollo 17 astronauts Eugene Cernan and Harrison Schmitt spent about 75 hours on the Moon in the Taurus-Littrow valley, while colleague Ronald Evans orbited overhead. This sharp image was taken by Cernan as he and Schmitt roamed the valley floor. The image shows Schmitt on the left with the lunar rover at the edge of Shorty Crater, near the spot where geologist Schmitt discovered orange lunar soil. The Apollo 17 crew returned with 110 kilograms of rock and soil samples, more than was returned from any of the other lunar landing sites. Forty five years later, Cernan and Schmitt are still the last to walk on the Moon. via NASA

Nothing like it has ever been seen before. The unusual space rock ‘Oumuamua is so intriguing mainly because it is the first asteroid ever detected from outside our Solar System — although likely many more are to follow given modern computer-driven sky monitoring. Therefore humanity’s telescopes — of nearly every variety — have put ‘Oumuamua into their observing schedule to help better understand this unusual interstellar visitor. Pictured is an artist’s illustration of what ‘Oumuamua might look like up close. ‘Oumuamua is also intriguing, however, because it has unexpected parallels to Rama, a famous fictional interstellar spaceship created by the late science fiction writer Arthur C. Clarke. Like Rama, ‘Oumuamua is unusually elongated, should be made of strong material to avoid breaking apart, is only passing through our Solar System, and passed unusually close to the Sun for something gravitationally unbound. Unlike a visiting spaceship, though, ‘Oumuamua’s trajectory, speed, color, and even probability of detection are consistent with it forming naturally around a normal star many millions of years ago, being expelled after gravitationally encountering a normal planet, and subsequently orbiting in our Galaxy alone. Even given ‘Oumuamua’s likely conventional origin, perhaps humanity can hold hope that one day we will have the technology to engineer ‘Oumuamua — or another Solar System interloper — into an interstellar Rama of our own. via NASA

Curiosity Rover Takes Selfie on Mars

Yes, but have you ever taken a selfie on Mars? The Curiosity rover on Mars has. This selfie was compiled from many smaller images — which is why the mechanical arm holding the camera is not visible. (Although its shadow is!) Taken in mid-2015, the featured image shows not only the adventurous rover, but dark layered rocks, the light colored peak of Mount Sharp, and the rusting red sand that pervades Mars. If you look closely, you can even see that a small rock is stuck into one of Curiosity’s aging wheels. Now nearing the end of 2017, Curiosity continues to explore the layers of sedimentary rocks it has discovered on Vera Rubin Ridge in order to better understand, generally, the ancient geologic history of Mars and, specifically, why these types of rocks exist there. via NASA

NGC 7822: Stars and Dust Pillars in Infrared

Young stars themselves are clearing out their nursery in NGC 7822. Within the nebula, bright edges and complex dust sculptures dominate this detailed skyscape taken in infrared light by NASA’s Wide Field Infrared Survey Explorer (WISE) satellite. NGC 7822 lies at the edge of a giant molecular cloud toward the northern constellation Cepheus, a glowing star forming region that lies about 3,000 light-years away. The atomic emission of light by the nebula’s gas is powered by energetic radiation from the hot stars, whose powerful winds and light also sculpt and erode the denser pillar shapes. Stars could still be forming inside the pillars by gravitational collapse, but as the pillars are eroded away, any forming stars will ultimately be cut off from their reservoir of star stuff. This field spans around 40 light-years at the estimated distance of NGC 7822. via NASA

Friday the Moon Smiled

Friday, an old Moon smiled for early morning risers. Its waning sunlit crescent is captured in this atmospheric scene from clear skies near Bursa, Turkey, planet Earth. In the subtle twilight hues nearby celestial lights are Jupiter (top) and Venus shining close to the eastern horizon. But today, Saturday, the Moon will be new and early next week its waxing crescent will follow the setting Sun as it sinks in the west. Then, a young Moon’s smile will join Saturn and Mercury in early evening skies. via NASA

Major Fireball Meteor

The sky glows with soft pinkish colors of fading twilight in this serendipitous mountaintop vista. Taken in subfreezing temperatures, the thoughtfully composed photo shows snowy, rugged peaks seen from a mountain pass on November 14. Below lies the village of La Villa, Alta Badia in Italy’s Dolomite Alps. Above the nestled village lights, the constellation Ursa Major hangs over the northern horizon. But most stunning is the intense fireball meteor. It was captured during the camera’s exposure by chance as it flashed east to west across the northern horizon, under Ursa Major’s familiar Big Dipper asterism. In fact, sightings of this major fireball meteor were widely reported in European skies, the most reported fireball event ever for planet Earth’s American Meteor Society and the International Meteor Organization. The meteor’s measured track over Germany is consistent with its origin near the active radiant of November’s Taurid Meteor Shower. Taurid meteors are associated with dust from Encke’s comet. via NASA

The Tarantula Nebula is more than a thousand light-years in diameter, a giant star forming region within nearby satellite galaxy the Large Magellanic Cloud, about 180 thousand light-years away. The largest, most violent star forming region known in the whole Local Group of galaxies, the cosmic arachnid sprawls across this spectacular view composed with narrowband data centered on emission from ionized hydrogen and oxygen atoms. Within the Tarantula (NGC 2070), intense radiation, stellar winds and supernova shocks from the central young cluster of massive stars, cataloged as R136, energize the nebular glow and shape the spidery filaments. Around the Tarantula are other star forming regions with young star clusters, filaments, and blown-out bubble-shaped clouds. In fact, the frame includes the site of the closest supernova in modern times, SN 1987A, right of center. The rich field of view spans about 1 degree or 2 full moons, in the southern constellation Dorado. But were the Tarantula Nebula closer, say 1,500 light-years distant like the local star forming Orion Nebula, it would take up half the sky. via NASA

NGC 7789: Caroline’s Rose

Found among the rich starfields of the Milky Way, star cluster NGC 7789 lies about 8,000 light-years away toward the constellation Cassiopeia. A late 18th century deep sky discovery of astronomer Caroline Lucretia Herschel, the cluster is also known as Caroline’s Rose. Its flowery visual appearance in small telescopes is created by the cluster’s nestled complex of stars and voids. Now estimated to be 1.6 billion years young, the galactic or open cluster of stars also shows its age. All the stars in the cluster were likely born at the same time, but the brighter and more massive ones have more rapidly exhausted the hydrogen fuel in their cores. These have evolved from main sequence stars like the Sun into the many red giant stars shown with a yellowish cast in this lovely color composite. Using measured color and brightness, astronomers can model the mass and hence the age of the cluster stars just starting to “turn off” the main sequence and become red giants. Over 50 light-years across, Caroline’s Rose spans about half a degree (the angular size of the Moon) near the center of the wide-field telescopic image. via NASA

Comet Machholz Approaches the Sun

Why is Comet Maccholz so depleted of carbon-containing chemicals? Comet 96P/Machholz’s original fame derives from its getting closer to the Sun than any other short period comet — half as close as Mercury — and doing so every five years. To better understand this unusual comet, NASA’s Sun-monitoring SOHO spacecraft tracked the comet during its latest approach to the Sun in October. The featured image composite shows the tail-enhanced comet swooping past the Sun. The Sun’s bright surface is hidden from view behind a dark occulter, although parts of the Sun’s extended corona are visible. Neighboring stars dot the background. One hypothesis holds that these close solar approaches somehow cause Comet Machholz to shed its carbon, while another hypothesis posits that the comet formed with this composition far away — possibly even in another star system. via NASA

Williamina Fleming s Triangular Wisp

Chaotic in appearance, these tangled filaments of shocked, glowing gas are spread across planet Earth’s sky toward the constellation of Cygnus as part of the Veil Nebula. The Veil Nebula itself is a large supernova remnant, an expanding cloud born of the death explosion of a massive star. Light from the original supernova explosion likely reached Earth over 5,000 years ago. Blasted out in the cataclysmic event, the interstellar shock waves plow through space sweeping up and exciting interstellar material. The glowing filaments are really more like long ripples in a sheet seen almost edge on, remarkably well separated into the glow of ionized hydrogen atoms shown in red and oxygen in blue hues. Also known as the Cygnus Loop, the Veil Nebula now spans nearly 3 degrees or about 6 times the diameter of the full Moon. While that translates to over 70 light-years at its estimated distance of 1,500 light-years, this field of view spans less than one third that distance. Often identified as Pickering’s Triangle for a director of Harvard College Observatory, the the complex of filaments is cataloged as NGC 6979. It is also known for its discoverer, astronomer Williamina Fleming, as Fleming’s Triangular Wisp. via NASA